
Chin. Phys. B Vol. 29, No. 10 (2020) 108705

TOPICAL REVIEW — Modeling and simulations for the structures and functions of proteins and nucleic acids

Application of topological soliton in modeling protein folding:
Recent progress and perspective
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Proteins are important biological molecules whose structures are closely related to their specific functions. Under-
standing how the protein folds under physical principles, known as the protein folding problem, is one of the main tasks
in modern biophysics. Coarse-grained methods play an increasingly important role in the simulation of protein folding,
especially for large proteins. In recent years, we proposed a novel coarse-grained method derived from the topological
soliton model, in terms of the backbone Cα chain. In this review, we will first systematically address the theoretical method
of topological soliton. Then some successful applications will be displayed, including the thermodynamics simulation of
protein folding, the property analysis of dynamic conformations, and the multi-scale simulation scheme. Finally, we will
give a perspective on the development and application of topological soliton.

Keywords: protein folding, coarse-grained method, Landau free energy function, topological soliton

PACS: 87.15.Cc, 87.14.E–, 87.15.A–, 87.15.hm DOI: 10.1088/1674-1056/abaed9

1. Introduction
Proteins are important functional molecules that partici-

pate in most of metabolic processes in living organisms. It is
well known that the biological function of a protein depends
critically on its three-dimensional native structure that is en-
coded in its amino acid sequence. This leads us to think about
the protein folding problem: how a protein folds into its bi-
ologically active structure under physical principles.[1,2] Fail-
ing to fold gives rise to loss of function or dysfunction for a
specific protein, which may be harmful or dangerous to the
living organism. A broad range of human diseases, such as
Alzheimer’s, Parkinson’s, type-II diabetes, and some types of
cancers, arise from protein misfolding.[3–5] At the same time,
the increasing spread of antibiotic-resistant pathogenic bacte-
ria renders the lose efficacy of current antibiotics at a rapid
rate and the lack of new antibacterial drugs.[6–8] And no ef-
fective treatments are found to prevent or control virulent viral
infections due to the mutability of viral interactions with host
cells, such as HIV, Ebola, SARS, and MERS.[9,10] The study
of protein folding not only provides insights into the biologi-
cal mechanisms of proteins but also is highly beneficial to the
discovery of new antibacterial and antiviral drugs at the molec-
ular level.

In recent decades, the protein folding problem has at-
tracted considerable attention of researchers.[2] Some success-
ful algorithms/methods have been devised to predict a pro-
tein’s native structure from its amino acid sequence with in-

creasing accuracy.[11–14] An excellent example is Alpha-Fold
that achieves the impressive results in predicting the protein
structure by deep learning.[14] Advanced experimental meth-
ods, such as optical tweezers and magnetic tweezers, have
been developed to survey the kinetic and thermodynamic fea-
tures at different stages of protein folding.[15–18] Computer-
aided computations have distinct advantages in completely de-
picting the folding process and exploring the key informa-
tion about the free energy landscape, the folding pathway, the
folding rate and the folding mechanism, specifically the inter-
mediate states with short lifetimes. All-atom molecular dy-
namics (MD) is popular in the simulation of protein folding,
however its huge computational cost and limited conforma-
tional space sampling are still intractable issues. The suc-
cess of all-atom MD simulation is limited to the fast folding
of small simple proteins, even with most powerful comput-
ing technologies.[19,20] Enhanced sampling techniques, such
as the replica exchange MD, accelerated MD, umbrella sam-
pling, and meta-dynamics, have been proposed to increase the
sampling efficiency in the conformational space.[21–24] On the
other hand, some coarse-grained models with different degrees
of simplification like UNRES and Gō model have been estab-
lished to quicken the simulation of protein folding.[25–29] In re-
cent years, coarse-grained methods are playing an increasingly
important role in the folding study of large proteins.[30–32]

We develop an original coarse-grained method from the
topological soliton for the protein folding research.[33–36]
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From the perspective of theoretical physics, a protein molecule
is one of string-like objects. We define the backbone Cα chain
of a protein that is regarded as a discrete string. The geome-
try of backbone Cα chain is analyzed by building local Frenet
frames. The Landau free energy function is constructed to
model the backbone Cα chain with the bond and torsion angles
as variables, on account of its invariance of frame rotation. The
discrete nonlinear Schrödinger equation derived from the Lan-
dau free energy function supports the dark soliton solution that
is used to describe the backbone Cα chain. In recent years, we
systematically proposed the topological soliton-based method
to the protein folding problem. Compared to other reduced
models, the soliton model is an effective theory with a sim-
ple Landau free energy and hence gains great advantages in
the simulation performance. In this paper, we will first give
a comprehensive review on the theoretical method of topolog-
ical soliton. Then some examples of successful applications
will be presented, including the folding simulations for both
ordered and disordered proteins, the multi-scale simulations
by combining with the all-atom MD, the characteristic anal-
ysis of dynamic conformations.[35–38] In the last section, we
will bring forward a perspective on the theory and possible
applications of topological soliton in protein researches.

2. Theoretical method of topological soliton
2.1. The backbone Cα chain

We simplify a protein molecule to a backbone Cα chain
which physically derives from the piecewise linear discrete
string.[33] Let 𝑟i with i = 1,2, . . . ,N denote the coordinates of
Cα atoms. As shown in Fig. 1, we introduce the unit tangent
vector 𝑡i, binormal vector 𝑏i and normal vector 𝑛i at each Cα

atom

𝑡i =
𝑟i+1−𝑟i

|𝑟i+1−𝑟i|
,

𝑏i =
𝑡i−1× 𝑡i

|𝑡i−1× 𝑡i|
, 𝑛i = 𝑏i× 𝑡i. (1)

The right-handed orthogonal triplet (𝑡i, 𝑛i, 𝑏i) constructs the
discrete Frenet frame at the i-th Cα atom of backbone chain.
The bond and torsion angles formed by the continuous Cα

atoms, shown in Fig. 2, are computed by the Frenet frame vec-
tors

κi ≡ κi+1,i = arccos(𝑡i+1 · 𝑡i), (2)

τi ≡ τi+1,i = sgn((𝑏i×𝑏i+1) · 𝑡i)arccos(𝑏i+1 ·𝑏i). (3)

From the coordinates of Cα atoms, all of the Frenet frames and
bond and torsion angles can be easily obtained by Eqs. (1)–
(3). Conversely, if all of bond and torsion angles are given, the
Frenet frame at the (i+1)-th Cα atom can be educed from the

one at the i-th Cα atom by the discrete Frenet equation𝑛i+1
𝑏i+1
𝑡i+1

 =

 cosκ cosτ cosκ sinτ −sinκ

−sinτ cosτ 0
sinκ cosτ sinκ sinτ cosκ


i+1,i

×

𝑛i
𝑏i
𝑡i

 . (4)

After setting up the Frenet frames along the backbone Cα

chain, the coordinates of Cα atoms 𝑟k with k = 1,2, . . . ,N are
determined by

𝑟k =
k−1

∑
i=0
|𝑟i+1−𝑟i| · 𝑡i =

k−1

∑
i=0
4𝑟i,i+1 · 𝑡i. (5)

Here 𝑟0 = 0, 𝑡0 points to the direction of positive z axis
and 𝑡1 locates on the y–z plane. And the distance between
two contiguous Cα atoms 4𝑟i,i+1 takes the constant value of
3.80 Å.[39]

i⇁

i↩

bi

ti

ni

Fig. 1. The Frenet frame vectors (𝑡i,𝑛i, 𝑏i) at the i-th Cα atom.

Fig. 2. The virtual bond and torsion angles (κi, τi) along the backbone
Cα chain.

Since equation (5) does not explicitly contain the vectors
𝑛i and 𝑏i, the backbone Cα chain remains unchanged under
the frames of (𝑛i, 𝑏i) are rotated by any angle θi around 𝑡i.
That is, the backbone Cα chain has the invariance for the local
SO(2) rotation of Frenet frame. Accordingly, the rotation acts
on the bond and torsion angles as follows:

κi → e iθiκi, τi → τi +θi−1−θi. (6)

The transformation of (κi, τi) does not affect on the geome-
try of the backbone Cα chain. From the definition in Eqs. (2)
and (3), the fundamental ranges of bond and torsion angles
are κi ∈ [0,π] and τi ∈ [−π,π), which can be regarded as the
latitude and longitude angles of the unit sphere. If the two
angles are extended into [−π,π]mod(2π), they can be consid-
ered as on torus.[35,39] The two-fold covering of the unit sphere
is compensated by the Z2 gauge transformation

κl → −κl , τi → τi−π, ∀ l ≥ i. (7)
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This is a special case of Eq. (6) with θl = π ( l ≥ i+ 1) and
θl = 0 (l < i+1). The Z2 symmetry motivates us to establish
the energy function for the backbone Cα chain from the string
theory.

2.2. Universal energy function and soliton

According to Anfinsen’s dogma,[40] the protein in the na-
tive state locates at the minimum of Helmholtz free energy

E =U−T S, (8)

where U is the internal energy, S is the entropy and T is the
temperature T . The angles (κi, τi) are adopted as the struc-
tural variables of the free energy because of their intrinsical
connection with the coordinates of Cα atoms. Considering
the Z2 gauge symmetry shown in Eq. (7), the Landau free en-
ergy is naturally introduced to describe the backbone Cα chain
of protein.[41,42] When the deformations of protein around the
energy minimum keep slow and small, the free energy can be
expanded as follows:

E = −
N−1

∑
i=1

2κi+1κi +
N

∑
i=1
{2κ

2
i + c(κ2

i −m2)2}

+
N

∑
i=1
{bκ

2
i τ

2
i +dτi + eτ

2
i +qκ

2
i τi}+ · · · . (9)

Here c, m, b, d, e, and q depend on the physicochemical prop-
erties and the microstructure of protein. And the parameters
are evaluated during training the minimal energy conforma-
tion of protein.[35,36]

From the extremum condition of energy function (9), an
expression of the torsion angles is deduced in terms of the
bond angles

τi[κi] =−
d +qκ2

i

2e+2bκ2
i
. (10)

To take the derivative of energy function (9) with respect to
κi and insert Eq. (10) into the ensuing equation, the following
equation for the bond angles κi is obtained

κi+1−2κi +κi−1 =
dU [κi]

dκ2
i

κi (i = 1,2, . . . ,N). (11)

Here κ0 = κN+1 = 0, and U [κi] is the effective potential

U [κi] =−
(

bd− eq
2b

)2 1
e+bκ2

i
− q2

4b
κ

2
i −2cm2

κ
2
i + cκ

4
i . (12)

In the case of folded protein, the values of the first two terms
in Eq. (12) are much less than the latter two

U [κi]≈−2cm2
κ

2
i + cκ

4
i . (13)

It is the familiar double-well potential with two separate min-
ima κi ≈ ±m, in which the positive and negative values of κi

are related by the Z2 transformation (7).

Equation (11) is a generalized discrete nonlinear
Schrödinger (DNLS) equation that supports a soliton solu-
tion. Though the exact analytical solution is unknown, equa-
tion (11) can be solved numerically by the iterative equation

κ
n+1
i = κ

n
i − ε{κn

i U ′[κn
i ]− (κn

i+1−2κ
n
i +κ

n
i−1)}. (14)

Here {κn
i }i∈N denotes the n-th iteration of an initial confor-

mation {κn
0}i∈N and ε is some sufficiently small but arbitrary

constant. The soliton solution is independent of the value of
ε which is often chosen to be 0.01 in the actual calculation.
Furthermore, we have found a good approximative analytical
solution

κi ≈
m1ec1(i−s)−m2e−c2(i−s)

ec1(i−s)+ e−c2(i−s)
. (15)

The m1 and m2 specify the asymptotic values of κi which are
adjacent to the soliton. The parameter s defines the center of
the soliton, and the c1 and c2 depict the shape of the variable
region for the soliton. All of these parameters are determined
by the profile of bond angles for the backbone Cα chain.

The statistics of crystal structures in PDB verifies that the
secondary structures of proteins have the local distributions
of bond and torsion angles.[39] For examples, κi ≈ π/2 and
τi ≈ 1 for the right-handed α-helix, κi ≈ 1 and τi ≈ π for the
β -strand. Other regular structures, such as 310 helix and left-
handed helix, have also the constant values of (κi, τi). The val-
ues of bond and torsion angles are variable for the loops in pro-
teins. Thus, the soliton solution of Eq. (11) can exactly model
the profile of bond angles for any super-secondary structure of
proteins. For instance, in the case of α-helix-loop-β -strand,
the soliton describes the profile that the variable values of κi

in the loop link the constant κi ≈ ±π/2 of the α-helix and
the constant κi ≈±1 of the β -strand. Since a protein is made
up of a few structural modules like α-helix-loop-β -strand, the
backbone Cα chain can be constructed by assembling all of
the solitons that model these modules.

2.3. Thermal nonequilibrium dynamics of proteins

Protein folding is a kind of thermal non-equilibrium pro-
cess. The folding near a thermal equilibrium proceeds in line
with the Arrhenius law for simple proteins.[43] On the other
hand, the Glauber algorithm manages the dynamics of a sim-
ple spin chain system coming close to the thermal equilibrium,
which also obeys the Arrhenius law.[44,45] Since proteins can
be regarded as spin chains, it is natural to simulate the protein
folding in terms of Glauber algorithm. The transition proba-
bility p (a→ b) between two states a and b is evaluated by

p (a→ b) =
1

1+ exp
(

∆Eba

kT

) . (16)

Here ∆Eba = Eb−Ea is the activation energy which is com-
puted by the energy function (9) during the Monte Carlo (MC)
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sampling. In addition, the steric constraint needs to be taken
into account: the distance between two non-adjacent Cα atoms
is always larger than 3.8 Å

|ri− rk|> 3.8 Å, |i− k| ≥ 2. (17)

This is considered as a necessary condition to accept a state
during the MC simulation.

The parameters of Landau free energy function in Eq. (9)
are not associated with the temperature explicitly. As a result,
the temperature factor kT in Eq. (16) is not the physical tem-
perature, but it can be related to the physical temperature by
the renormalization. In the transition probability, the nearest
neighbor coupling in the energy function is normalized to

− 2
kT

N−1

∑
i=1

κi+1κi. (18)

Thus the temperature factor kT is related to the physical tem-
perature t in such a way

2
kT
→ J(t)

kBt
, (19)

where kB is the Boltzmann constant. The coefficient J(t) com-
plies with the renormalization group equation

t
dJ
dt

= βJ(J;c,m,b,d,e,q). (20)

Assuming that the leading order of βJ only depends on J(t),
and the expansion of J(t) at the low temperature limit is as
follows:

J(t)≈ J0− J1tα + · · · . (21)

Equation (20) can be turned into

α(J(t)− J0) = βJ(J(t)). (22)

From Eq. (19), the coefficient J(t) can be expressed by the
temperature factor kT and the physical temperature

J(t)≈ 2kBt
kT

. (23)

Combining Eq. (20) with Eq. (23), the renormalization group
equation translates into

t
d
dt

(
1

kT

)
=− 1

kT
+

1
2kBt

βJ

(
2kBt
kT

)
. (24)

By solving Eq. (24), we find the relation between the temper-
ature factor and the physical temperature

kT ≈ 2
J0

kBt · exp
(

J1

J0
tα

)
. (25)

As long as the proper experimental temperatures are known,
such as the transition temperature between the folded and
completely unfolded states, the temperature factor kT can be
converted into the corresponding physical temperature in the
practical MC simulation.

3. Applications of the soliton model in protein
folding
The soliton model and its related techniques on geom-

etry analysis provide us a series of powerful tools in many
fields of the protein structural dynamics, such as the thermo-
dynamics simulation, the dynamical property analysis and the
multi-scale simulations. In this section, we will review these
applications.

3.1. On the thermodynamics simulations

The soliton model is an effective coarse-grained model
based on the backbone Cα chain of the protein native struc-
ture. The parameters in the free energy function (9) and the
soliton model of a protein can be obtained by fitting the ground
state of the free energy into its native structure. Table 1 is
a list of proteins that are modelled using topological soliton
by far. The RMSD between the soliton model and the exper-
imental structure indicates that the modelling accuracy is as
high as sub-Angstrom. Once the parameters in the free energy
function (9) are determined, the thermodynamical properties
can be investigated by a MC sampling process as described in
Subsection 2.3.

Table 1. The proteins that have been fitted using topological soliton model.

Proteins PDB ID Length of sequence RMSD/Å

Villin headpiece 35 1YRF 29 aa 0.38
Myoglobin 1ABS 154 aa 0.78
HIV-1 reverse transcriptase protein 3DLK 18 aa 1.13
λ -repressor 1LMB 84 aa 0.51
Human islet amyloid polypeptide 2L86 37 aa 1.17
Myc proto-oncogene protein 1NKP 88 aa 0.98
Amyloid intra-cellular domain 3DXC 28 aa 0.46
Engrailed homeodomain 2JWT 61 aa 0.67
Parvalbumin-β 2PVB 57 aa 1.28

Depending on the properties of the conformational en-
semble at low temperature, the protein can be classified into
ordered protein and disordered protein. For an ordered pro-
tein, it is assumed to fold into an essentially unique native
structure when cooled down to a low temperature. In other
words, the native conformational ensemble is highly local-
ized and the free energy landscape nearby the native state is
funnel-like. In contrast, when an intrinsically disordered pro-
tein is cooled down to a low temperature, the conformational
ensemble is structurally disparate but energetically compara-
ble. For intrinsically disordered protein, the energy landscape
at the native state is basin-like, i.e., the different substates are
separated with each other only by some relatively low energy
barriers. The soliton model can deal with both kinds of pro-
teins. In comparison with the Gō-like model which is also
native structure based,[25] the number of the parameters in the
soliton model is much fewer than the degree of freedom of the
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protein structure. As a result, the soliton model can give pre-
dictions beyond the pre-known native structure, which makes
it possible to give the landscape of the intrinsically disordered
protein.

3.1.1. On the ordered protein

We take myoglobin as an example, to show the applica-
tion of the soliton model in the thermodynamics simulation on
the ordered protein.[46] Myoglobin is a kind of globular protein
composed of 154 amino acids, and plays an important role in
transporting oxygen. The native structure of myoglobin can be
measured through the x-ray crystallographical method. Here
we take the PDB entry 1ABS with resolution 1.5 Å for setting
up the soliton model on myoglobin. The backbone Cα chain
of the myoglobin is modelled by 10 solitons, whose parame-
ters are shown in Table 1 in Ref. [46], giving the modelling
accuracy about 0.8 Å. From the soliton model, the MC simu-
lation with a heating-cooling cycle is performed to make sure
the myoglobin can correctly unfold and refold, and the con-
formational ensembles are collected at different temperatures
in the heating process. The above process is repeated thou-
sands of times until the conformational ensembles get con-
verged. For the detailed settings of the simulation, we refer to
the literature.[46] In the end, we analyze the radius of gyration
as a function of simulation temperature as shown in Fig. 3.

Number of steps/106

log10T
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/
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Fig. 3. The radius of gyration evolution with temperature increasing. The
gray, red, yellow dashed lines are corresponding to the real temperatures of
25 ◦C, 75 ◦C, and 90 ◦C, respectively. Reproduced with permission from
Ref. [46].

log10T

χ
τ

T1 TE T2

B, C, D, E,F
H

A

G

Fig. 4. The susceptibility of helical denucleation. Three transition tempera-
tures are labeled as T1, T2, TE, representing the two transition temperatures
for the radius of gyration and for the energy, respectively. The colored thick
dash lines are the same as in Fig. 3. Reproduced with permission from
Ref. [46].

We can see that there is an metastable intermediate state
between the native state and completely unfolded state in the
simulation. The radius of gyration of intermediate state is
24 Å, which is very close to the experimental measurement
(23.6 Å) on the molten globular state of the apomyoglobin.
In addition, α-helical denucleation are also studied. For each
helix in the native state, the susceptibility of denucleation is
calculated as shown in Fig. 4, where we can see that the order
of denucleation is F→ BCDE→ A,H→ G.

3.1.2. On the intrinsically disordered protein

For the intrinsically disordered protein, we take two pro-
teins as examples: one is the human islet amyloid polypep-
tide (hIAPP), and the other is the amyloid precursor protein
intra-cellular domain (AICD).[35,36] Both proteins are amy-
loid related and intrinsically disordered. In PDB, the native
structures of hIAPP (PDB code: 2L86) and AICD complex
with the C-terminal phosphotyrosine-binding (PTB) domain
of Fe65 (PDB code: 3DXC) are measured by NMR and x-ray
crystallographic methods, respectively. The superimpositions
of the native structures and their corresponding soliton models
are shown in Fig. 5, and their corresponding fitting accuracies
are 1.17 Å and 0.59 Å, respectively. Then the heating-cooling
MC simulations are performed, so that the intrinsically dis-
ordered protein can overcome the energy barriers and reach
other possible conformations from the initial conformation. In
the end, the conformational ensembles in the low temperature
are generated and analyzed.

Fig. 5. The superimposition of the soliton model and PDB structures. Left
panel is for 2L86 and right panel is for 3DXC. The light blue is from PDB
structure and the red is from soliton model. Reproduced with permission
from Refs. [35,36].

For hIAPP, after clustering analysis, six different confor-
mational clusters are obtained as shown in Fig. 6. By fur-
ther analyzing the conformational locality and stability of each
cluster, we identify that the cluster 1 composed of two anti-
parallel helices is a good candidate to trigger the hIAPP ag-
gregation and amyloidosis. This conclusion is consistent with
many known observations in the literatures.

For AICD, the conformational landscape at different en-
ergy levels are systematically investigated nearby the energy
minimum, as shown in Fig. 7. It is found that the native state
of the isolated AICD can be a superposition of a family of de-
generate conformations, which relates to the mobility of the
soliton configuration as shown in Fig. 8. These results should
provide a basis for analyzing the isolated AICD structures in
the future NMR experiments.
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Fig. 6. The conformational clusters for 2L86 at low temperature. Panel (a) is the conformational landscape, and panel (b) is the representative
structures. Reproduced with permission from Ref. [35].
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Fig. 7. The conformational clusters for 3DXC at low temperature. Panel (a) is the energy landscape of the conformational ensemble, where the
red triangle denotes the initial structure in PDB. Panel (b) is the representative structures whose energies are lower than the initial structures.
Reproduced with permission from Ref. [36].
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Fig. 8. The corresponding soliton mobility of the clusters in 3DXC. Reproduced with permission from Ref. [36].
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3.2. On combination with all-atom MD simulations

Another important application of the soliton model is to
combine with all-atom MD simulations. There are two ways to
cooperate with all-atom MD simulations: (i) The multi-scale
MD simulations, i.e., to perform the MD simulation with spe-
cific initial conformation picked up from the thermodynamics
simulation of the soliton model. (ii) To analyze the collective
dynamical properties in the all-atom MD simulation from the
viewpoint of soliton model.

3.2.1. The multi-scale MD simulations

For the application in the multi-scale MD simulations, we
study the Myc proto-oncogene protein (PBD code: 1NKP) in
the monomeric state,[38] which is intrinsically disordered but
highly important in biomedicine. We first perform the thermo-
dynamics simulation from soliton model, to generate the pos-
sible structural ensembles in the native state. For Myc protein,
we get five clusters as shown in Fig. 9. For each cluster, the
all-atom MD simulations at relatively low temperature (290 K)
are performed with randomly selected conformation from each
cluster as the initial structure. We find that the only simulation
with the initial structure in cluster 1 can quickly converge to a
stable ensemble. As an example, a comparison of the RMSD
evolution on clusters 1, 4, and 5 (the cluster containing the

native structure in PDB) is shown in Fig. 10, from which we
can infer that the structures in cluster 1 is the most favorable
conformation for the isolated Myc protein. Such information
could be helpful for the future study on drug design.
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Fig. 9. The conformational clusters for 1NKP at low temperature. Top
panel is the energy landscape of the conformational ensemble, where
the red triangle denotes the initial structure in PDB. The bottom panel is
the corresponding conformational landscape projected from top panel.
Reproduced with permission from Ref. [38].
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Fig. 10. The stability comparison among clusters in 1NKP, (a) comparison of the RMSD evolutions in MD simulations with initial confor-
mations in clusters 1, 4, and 5 (denoted as PDB in the legend), (b) a comparison of the radius of gyration evolutions in MD simulations with
initial conformations in clusters 1, 4, and 5 (denoted as PDB in the legend), (c) the conformational landscape evolution for MD simulations
with initial conformation from cluster 1, (d) the conformational landscape evolution for MD simulations with initial conformation from cluster
5. Reproduced with permission from Ref. [38].

3.2.2. The dynamical properties analysis

For the application in the dynamical properties analysis,
we study the folding properties of the α-helix subunit in HIV
envelope glycoprotein gp41 (PDB code: 1AIK).[37] There are
six α-helical subunits in the biological assembly. We isolate
a subunit from it and run all-atom MD simulations in explicit
solvent. In isolation, the subunit is unstable and starts folding

and the trajectory shows the folding process in atomic resolu-
tion. For analyzing the folding properties, we define several
collective variables based on the geometrical properties from
the concept of soliton model, including the spin chain variable
and folding index for backbone and sidechain, respectively. In
Fig. 11, we can see that during the folding procedure the pro-
tein twists itself in different levels (the folding index fluctuates
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between−2 and 4) and finally stabilizes itself at folding index
being 1. The clear soliton motion is found in the N-terminal
sidechain spin variable analysis as shown in Fig. 12. Hence, by
analyzing such collective variables in the all-atom MD trajec-
tory, the Bloch spin wave structure and its motion are observed
in the folding process.
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Fig. 11. The folding index evolution in MD simulation. The top panel is
the folding index in the entire MD simulation process, and bottom panel is
a zoom in of top panel in frame 3950–4000. Reproduced with permission
from Ref. [37].

Frame
Residue

Frame
Residue

Fig. 12. The sidechain soliton motion in the N-terminal of the protein during
the MD simulation. The two panels show the same data, but from different
perspectives, for the first ten residues. Reproduced with permission from
Ref. [37].

4. Conclusion and perspective
The protein folding is an outstanding conundrum in life

science and always attracts plenty of attention. Researches
have shown that the soliton model is universal and can cover
most of the structures in PDB.[47] Hence, the concept of the
soliton model can be widely used in protein research. In this
paper, we reviewed the theory and possible applications of

the soliton model and its related techniques in several differ-
ent fields of the protein researches. As a new coarse-grained
model derived from the gauge invariant principle of a string,
the soliton model can not only reduce the complexity in pro-
tein thermodynamics simulations, but also can successfully
cooperate with the traditional MD simulations for the multi-
scale strategy and the collective dynamical property analysis.
In addition, the discrete Frenet frame as well as its similar
frames also provide a useful tool for the protein structure vi-
sualization, validation, refinement and reconstruction.

However, we note that more efforts are still needed for the
further development of the topological soliton model. Firstly,
the parameters in soliton are determined by a fitting/training
process using the native structure currently, which requires
that the native structure must be experimentally measured as
accurately as possible. To break this limit, the parameters
should be obtained from only the information of sequence and
environment. Secondly, the current applications of the soliton
model are limited to the monomeric protein. To extend the
model to the multi-chain case, the protein–protein interaction
such as the effective Lennard–Jones interaction between the
chains need to be implemented, which is the future direction of
the soliton model. Last but not least, the relation between the
realistic force field and soliton model, i.e., how the effective
free energy of the topological soliton model is derived from
the atomic interactions, needs to be further investigated.
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